Towards a low-power exclusion

A. Faraone Motorola Labs

Presentation to IEEE SCC34-SC2

May 22nd, 2003

Where we are today

- IEEE limit (1.6 mW/g, 1-g)
 - Products emitting less than 1.6 mW can be safely excluded from SAR testing
- ICNIRP limit (2 mW/g, 10-g)
 - Products emitting less than 20 mW can be safely excluded from SAR testing

Goal of the study

- Define conservative conditions to determine maximum localized SAR (1-g & 10-g) that can be produced in body exposed in the near field of an RF sources in the 300-3000 MHz band
- Determine the corresponding maximum RF power levels that can produce exposure levels that are still compliant with applicable exposure limits under those conditions

"Experimental" conditions

- Flat phantom
 - P1528 "head simulating tissue" properties
- Short dipole
 - $\sim \lambda_0/10 \text{ long}$
 - Parallel orientation

Computational tool

- XFDTD™ v5.3 by Remcom
 - Uniform voxel size in all three dimensions
 - 5 mm minimum step
 - Liao's surface ABC
 - at least ten voxel clearance
 - Center-fed wire antenna
 - odd number of voxels
 - Thevenin source with sinusoidal excitation
 - at least ten periods
 - Simultaneous 10-g and 1-g SAR estimation

Simulation details

Frequency [MHz]	300	450	900	1450	1900	2450	3000
Relative Permittivity	45	44	42	41	40	39	39
Conductivity [S/m]	0.87	0.87	0.97	1.2	1.4	1.8	2.4
Wavelength [cm]	100	66.7	33.3	20.7	15.8	12.2	10
Wavelength in dielectric [mm]	133	94	50	32	25	19	16
Maximum allowable voxel size [mm]	13.3	9.4	5.0	3.2	2.5	1.9	1.6
Employed voxel size [mm]	5	5	2.5	1.67	1.67	1	1
Dipole length in Voxels	19	13	13	11	9	11	9
Dipole electrical length	0.095	0.098	0.098	0.089	0.095	0.090	0.090
Flat phantom edge size in Voxels	60	40	50	76	76	126	126
Flat phantom edge size [cm]	30	20	12.5	12.67	12.67	12.6	12.6
Flat phantom height in Voxels	30	30	50	76	76	126	126
Flat phantom height [cm]	15	15	12.5	12.67	12.67	12.6	12.6
One cm distance in Voxels	2	2	4	6	6	10	10
2.5 cm distance in Voxels	5	5	10	15	15	25	25

6

Model consistency (i)

Model consistency (ii)

300 MHz

Electrically smallest phantom

Model consistency (iii)

300 MHz

Electrically smallest phantom

Model consistency (iv)

300 MHz

Electrically smallest phantom

Antenna characteristics

- Center-fed, short ($\lambda_0/10$) dipole
 - High EM energy density for a set output power
 - Low radiation resistance requires high feed-point current to emit a given amount of RF power
 - High H-field produces high localized SAR
- Will also investigate small loop antenna

Bandwidth @ 300 MHz (free-space)

 Capacitive impedance compensated with series inductance

Best achievable FS bandwidth

- VSWR relative to 2.5 Ω source resistance
 - 200 kHz2:1 BW(<<1%)
 - 400 kHz3:1 BW(~0.15%)
 - 700 kHz6:1 BW(~0.25%)

Bandwidth @ 300 MHz (loaded)

- Best achievable 2:1 SWR bandwidth ~1%
 - Significantly detuned (~3%) going from
 1 cm to 2 cm distance from the lossy body

Input impedance

SAR per Watt

Max allowed power

Notes

- Markedly different SAR behavior between 10 mm and 25 mm source distance
 - Sharp SAR increase for 10 mm,
 - Modest SAR fluctuation for 25 mm
 - Possible explanation: Higher electrical distance produce higher wave impedance at the dielectric interface, thus producing higher reflected power
 - Kuster-Balzano formula predicts such general behavior

Notes

- Source model seems too conservative
 - High-Q (narrow bandwidth) and uncertain proximity to the body produce unreliable impedance match
 - No one would use a 1% bandwidth small antenna to be operated in undefined position near high- ε_r objects
 - Low source resistance, capacitive reactance require use of matching techniques that reduce efficiency
 - Maybe, the exclusion table should be based on a twodimensional "frequency/fractional bandwidth" table

Inputs received so far

- Use frequency AND bandwidth criteria
 - Chu's limit provides a bandwidth upper-bound for a given electrical volume of the antenna
 - Wider band is achieved using longer dipole antenna
- Compare SAR "imprints" with worst-case distributions defined in P1528
 - Relate our model with realistic product behaviors
 - We might find out we've been way too conservative

Proposal

- Form a small task force
 - Replicate FDTD simulations
 - Refine simulation model(s)
 - Perform select validation measurements
 - Compare findings with available product data, e.g., from FCC type approval database
 - Produce final report to SCC34-SC2